Problem Set 1

Feel free to collaborate with classmates on problem sets.
This problem set deals with a Robinson Crusoe economy with two factors of production and two commodities.

Let there be two factors: land denoted T , and labor denoted L . The resource endowment of T is T^{0}; the resource endowment of L is L°.

Let there be two goods, x and y .
Robinson has a utility function $u(x, y)$. There is no utility from leisure.

The prevailing wage rate of labor is w , and the rental rate on land is r .
Good x is produced in a single firm by the production function $f\left(L^{x}, T^{x}\right)=x$, where L^{x} is L used to produce x, T^{x} is T used to produce x. $f\left(L^{x}, T^{x}\right) \geq 0$ for $L^{x} \geq 0, T^{x} \geq 0 ; f(0,0)=0$.

Good y is produced in a single firm by the production function $\mathrm{g}\left(\mathrm{L}^{\mathrm{y}}, \mathrm{T}^{\mathrm{y}}\right)=\mathrm{y}$ where L^{y} is L used to produce $\mathrm{y}, \mathrm{T}^{\mathrm{y}}$ is T used to produce y . $g\left(L^{y}, T^{y}\right) \geq 0$ for $L^{y} \geq 0, T^{y} \geq 0 ; g(0,0)=0$.

The price of good x is p^{x}. The price of good y is p^{y}. Profits of firm x are $\Pi^{x}=p^{x} f\left(L^{x}, T^{x}\right)-\mathrm{wL}^{x}-r T^{x}$. Profits of firm y are $\Pi^{y}=p^{y} g\left(L^{y}, T^{y}\right)-\mathrm{wL}^{y}-r T^{y}$.

Robinson's income then is $\mathrm{wL}+\mathrm{rT}+\Pi^{\mathrm{x}}+\Pi^{\mathrm{y}}$
Assume f, g, u, to be strictly concave, differentiable. Assume all solutions are interior solutions. Subscripts denote partial derivatives. That is, $\mathrm{u}_{\mathrm{x}}=(\partial \mathrm{u} / \partial \mathrm{x})=$ marginal utility of $\mathrm{x}, \ldots, \mathrm{f}_{\mathrm{L}}=(\partial \mathrm{f} / \partial \mathrm{L})=$ marginal product of labor in x ,

The production frontier consists of those x - y combinations that efficiently and fully utilize L^{0} and T^{0} in producing x and y . The marginal rate of transformation of x for $\mathrm{y}, \mathrm{MRT}_{\mathrm{x}, \mathrm{y}}$ is defined as -(dy/dx) along this frontier. $\mathrm{MRT}_{\mathrm{x}, \mathrm{y}}$ is the additional y available from efficiently reallocating inputs of T and L to producing y while sacrificing one unit of x . At a technically efficient (efficient in allocation of inputs on the production side) allocation, we have

$$
-(\mathrm{dy} / \mathrm{dx})=\mathrm{MRT}_{\mathrm{x}, \mathrm{y}}=\left(\partial \mathrm{y} / \partial \mathrm{L}^{\mathrm{y}}\right) /\left(\partial \mathrm{x} / \partial \mathrm{L}^{\mathrm{x}}\right)=\mathrm{gL}_{\mathrm{L}} / \mathrm{f}_{\mathrm{L}} .
$$

The marginal rate of transformation of x for y equals the ratio of marginal products.

A (Pareto) efficient allocation in the economy is characterized by maximizing $u(x, y)$ subject to the technology and resource constraints. Thus a Pareto efficient allocation corresponds to values of $\mathrm{x}, \mathrm{y}, \mathrm{L}^{\mathrm{x}}, \mathrm{L}^{\mathrm{y}}, \mathrm{T}^{\mathrm{x}}, \mathrm{T}^{\mathrm{y}}$ maximizing the Lagrangian, Λ, with Lagrange multipliers a, b, c, d:

$$
\begin{equation*}
\Lambda=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{a}\left(\mathrm{x}-\mathrm{f}\left(\mathrm{~L}^{\mathrm{x}}, \mathrm{~T}^{\mathrm{x}}\right)\right)+\mathrm{b}\left(\mathrm{y}-\mathrm{g}\left(\mathrm{~L}^{\mathrm{y}}, \mathrm{~T}^{\mathrm{y}}\right)\right)+\mathrm{c}\left(\mathrm{~L}^{0}-\mathrm{L}^{\mathrm{x}}-\mathrm{L}^{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{~T}^{0}-\mathrm{T}^{\mathrm{x}}-\mathrm{T}^{\mathrm{y}}\right) \tag{1}
\end{equation*}
$$

1. Differentiate Λ with respect to $\mathrm{x}, \mathrm{y}, \mathrm{T}^{\mathrm{x}}, \mathrm{T}^{\mathrm{y}}$, and set the derivatives equal to 0 . That gives first order conditions for an extremum of Λ, a Pareto efficient allocation. Let (2) be your first order condition with respect to x, (3) with respect to y , (4) with respect to T^{x}, (5) with respect to T^{y}.
2. Show that Pareto efficiency requires that the marginal rate of substitution of x for y be the marginal rate of transformation (as computed with respect to T). That is, Pareto efficiency requires that

$$
\begin{equation*}
u_{x} / u_{y}=g_{T} / f_{T} \tag{6}
\end{equation*}
$$

Hint: You can demonstrate (6) by combining (2), (3), (4) and (5) appropriately. Explain in words what (6) means. Why does it make sense as an efficiency condition?
3. Differentiate Λ with respect to $\mathrm{L}^{\mathrm{x}}, \mathrm{L}^{\mathrm{y}}$, to characterize first order conditions for a Pareto efficient allocation of labor.
4. Repeat exercise $\mathbf{1}$ with respect to L . That is, show that Pareto efficiency requires that $\mathrm{u}_{\mathrm{x}} / \mathrm{u}_{\mathrm{y}}=\mathrm{g}_{\mathrm{L}} / \mathrm{f}_{\mathrm{L}}$.
5. Show that Pareto efficiency requires that marginal rates of technical substitution of L for T are the same for both firms. That is, Pareto efficiency requires $g_{L} / g_{T}=f_{L} / f_{T}$. Explain in words what this expression means.
6. First order conditions for profit maximization and for utility maximization subject to budget constraint are:

$$
\begin{align*}
& \mathrm{w}=\mathrm{p}^{\mathrm{x}} \mathrm{f}_{\mathrm{L}}=\mathrm{p}^{\mathrm{y}} \mathrm{~g}_{\mathrm{L}} ; \tag{7}\\
& \mathrm{r}=\mathrm{p}^{\mathrm{x}} \mathrm{f}_{\mathrm{T}}=\mathrm{p}^{\mathrm{y}} \mathrm{~g}_{;} \tag{8}\\
& \mathrm{x}^{/} / \mathrm{p}^{\mathrm{y}}=\mathrm{u}_{\mathrm{x}} / \mathrm{u}_{\mathrm{y}} \tag{9}
\end{align*}
$$

These conditions (7), (8), (9), will be fulfilled in a competitive equilibrium. Show that these equilibrium conditions lead to fulfillment of the efficiency conditions in 2, 3, 4, and 5 .

