Problem Set 1

Feel free to collaborate with classmates on problem sets.

This problem set deals with a Robinson Crusoe economy with two factors of production and two commodities.

Let there be two factors: land denoted T, and labor denoted L. The resource endowment of T is T° ; the resource endowment of L is L° .

Let there be two goods, x and y.

Robinson has a utility function u(x, y). There is no utility from leisure.

The prevailing wage rate of labor is w, and the rental rate on land is r.

Good x is produced in a single firm by the production function $f(L^x,T^x) = x$, where L^x is L used to produce x, T^x is T used to produce x. $f(L^x,T^x) \ge 0$ for $L^x \ge 0$, $T^x \ge 0$; f(0,0)=0.

Good y is produced in a single firm by the production function $g(L^y,T^y) = y$ where L^y is L used to produce y, T^y is T used to produce y. $g(L^y,T^y) \ge 0$ for $L^y \ge 0$, $T^y \ge 0$; g(0,0)=0.

The price of good x is p^x . The price of good y is p^y . Profits of firm x are $\Pi^x = p^x f(L^x, T^x) \cdot wL^x \cdot rT^x$. Profits of firm y are $\Pi^y = p^y g(L^y, T^y) \cdot wL^y \cdot rT^y$.

Robinson's income then is $wL+rT+\Pi^{x}+\Pi^{y}$

Assume f, g, u, to be strictly concave, differentiable. Assume all solutions are interior solutions. Subscripts denote partial derivatives. That is, $u_x = (\partial u/\partial x) =$ marginal utility of x, ..., $f_L = (\partial f/\partial L) =$ marginal product of labor in x,

The production frontier consists of those x - y combinations that efficiently and fully utilize L° and T° in producing x and y. The marginal rate of transformation of x for y, $MRT_{x,y}$ is defined as -(dy/dx) along this frontier. $MRT_{x,y}$ is the additional y available from efficiently reallocating inputs of T and L to producing y while sacrificing one unit of x. At a technically efficient (efficient in allocation of inputs on the production side) allocation, we have

 $-(dy/dx) = MRT_{x,y} = (\partial y/\partial L^y)/(\partial x/\partial L^x) = g_L/f_L .$

The marginal rate of transformation of x for y equals the ratio of marginal products.

(continued next page)

A (Pareto) efficient allocation in the economy is characterized by maximizing u(x,y) subject to the technology and resource constraints. Thus a Pareto efficient allocation corresponds to values of x,y,L^x,L^y,T^x,T^y maximizing the Lagrangian, Λ , with Lagrange multipliers a, b, c, d:

$$\Lambda = u(x,y) + a(x-f(L^{x},T^{x})) + b(y-g(L^{y},T^{y})) + c(L^{o}-L^{x}-L^{y}) + d(T^{o}-T^{x}-T^{y})$$
(1)

1. Differentiate Λ with respect to x, y, T^x, T^y, and set the derivatives equal to 0. That gives first order conditions for an extremum of Λ , a Pareto efficient allocation. Let (2) be your first order condition with respect to x, (3) with respect to y, (4) with respect to T^x, (5) with respect to T^y.

2. Show that Pareto efficiency requires that the marginal rate of substitution of x for y be the marginal rate of transformation (as computed with respect to T). That is, Pareto efficiency requires that

 $u_x/u_y = g_T/f_T$ (6) Hint: You can demonstrate (6) by combining (2), (3), (4) and (5) appropriately. Explain in words what (6) means. Why does it make sense as an efficiency condition?

3. Differentiate Λ with respect to L^x , L^y , to characterize first order conditions for a Pareto efficient allocation of labor.

4. Repeat exercise 1 with respect to L. That is, show that Pareto efficiency requires that $u_x/u_y = g_L/f_L$.

5. Show that Pareto efficiency requires that marginal rates of technical substitution of L for T are the same for both firms. That is, Pareto efficiency requires $g_L/g_T = f_L/f_T$. Explain in words what this expression means.

(continued next page)

6. First order conditions for profit maximization and for utility maximization subject to budget constraint are:

$w=p^{x}f_{L}=p^{y}g_{L}$	(7)
$\mathbf{r} = \mathbf{p}^{\mathbf{x}} \mathbf{f}_{\mathrm{T}} = \mathbf{p}^{\mathbf{y}} \mathbf{g}_{\mathrm{T};}$	(8)
$p^{x}/p^{y} = u_{x}/u_{y}$	(9)

These conditions (7), (8), (9), will be fulfilled in a competitive equilibrium. Show that these equilibrium conditions lead to fulfillment of the efficiency conditions in 2, 3, 4, and 5.